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Substituted Alkynes to 1,2,4,5-Tetrazine 
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Abstract: MR3-substituted alkynes 2 and 3 (M = Si, Ge, Sn; R = alkyl) show high reactivity in 
inverse-type Diels-Alder reactions with the ~-electron-deficient 1,2,4,5-tetrazine 1 in strict contrast 
to the corresponding carbon compounds. Kinetic data prove the huge accelerating effect of the 
trialkyltin substituent, offering a simple access to new beteroaromatic organotin derivatives, which 
can be easily transformed by standard methods of organotin chemistry. © 1997 Elsevier Science Ltd. 

Simple organotin alkynes, like ethynyltributyltin 2d, are known to be sluggish dienophiles in Diels-Alder 

reactions. According to the literature, 1 they undergo [4+2] cycloadditions only if a second electronwith- 

drawing substituent (e.g. -COOMe), which lowers the energy of the LUMO, is also present in the alkyne. 

But, from the opposite point of  view, this fact implies, that these 2~-systems should be reactive dienophiles in 

inverse-type Diels-Alder reactions. Nevertheless, only few examples have been reported in the literature (e.g. 

hexachlorocyclopentadiene, 2' 3,6-disubstituted tetrazines2b). In order to examine this reactivity problem, 

several mono- and disubstituted alkynes 2 and 3 were prepared according to published procedures. 1,2,4,5- 

Tetrazine 13 was chosen as an electron-poor diene in order to minimize steric interactions in the transition 

state. 

Pyridazines 4 and 5 (all previously unknown, except 5a) could easily be prepared by [4+2] cycloaddition in 

high yields (Scheme 1, Tables la and lb). 4 

R 1 

I II + P 

N ~ / N  - N2 R 2 
R 2 

1 2a-d 4a-d 
3a-e Sa-e 

S c h e m e  1 

R ~ R 2 

2a,4a -CMe3 -H 
2b,4b -SiMe3 -H 
2c,4e -GeMe3 -H 
2d,4d -SnBu3 -H 
3a,Sa -CMe3 -CMe3 
3b,Sb -SiM¢3 -ShMe3 
3c,5¢ -GeMe3 -GeMe3 
3d,Sd -SnBu3 -SnBu3 
3e,Se -SnMe3 -SnMe3 

The structure of the pyridazines obtained was characterized by spectroscopic data (IH, 13C-NM~ El-MS 

(70eV), IR) and correct elemental analysis. The purity of the liquid monosubstituted pyridazines was also 

checked by means of gas chromatography. 4,5-Disubstituted pyridazines are colourless, crystalline 

compounds (except 5d: yellow oil). 
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Table la. Reaction conditions for the synthesis of  monosubstituted pyridazines (R 2= -H) 

Product R 1 Solvent T (°C) t Yield (%) Purity (GC)" 

4a -CMe3 RT s 4 weeks 74 97.9 

4b -SiMe3 Acetonitrile 805 2 h 94 100 • IIN~X"~RI-- 

4¢ - G e M e 3  Acetonitrile 80 1.5 h 80 98.8 Iq x~,J 

4d -SnBu3 Toluene RT 12 h 76 97.5 4a-d 

° areain % 

Table lb. Reaction conditions for the synthesis of4,5-disubstituted pyridazines 

Product R ~ = R: Solvent T (°C) t (h) Yield (%) Mp. (°C) 

Sa -CMe3 Chloroform 655 120 12 108 1 

5b -SLMe3 Acetonitrile 80 12 93 94-95 * ' ~ " "  "" ~_ R 

5c -GeMe3 Dioxane RT 120 93 93-94 N ~,,,,-,,, R2 

5d -SnBu~ Dichloromethane RT 2 71 yellow off Sa4 

Se -SnMe3 Dichloromethaue RT 2 82 79-80 

Experimental conditions indicate an increase in reactivity, if the substituent is changed from carbon to tin 

(4a -~ 4d, 5a --) 5e). This fact was also demonstrated by kinetic rate measurements. Second order rate 

constants were determined in dioxane at 20°C, 6 in order to achieve comparability with existing kinetic data. ~ 

The rate constants increase rapidly, when the substituent is varied systematically within the rough main group 

of the periodic system. In comparison with literature data for unsubstituted acetylene (kz* l0 s = 2.91 l/mol s) ~ 

the activating effect of-MR3 substituents (M = Si, Ge or Sn) on the triple bond towards inverse-type Dieis- 

Alder reactions is evident. As expected, organotin alkynes offer the highest reactivity. 

Table 2. Rate constants k2* l0 s [1/mol s], 20°C, dioxane, for the reaction of  1,2,4,5-tetrazine I with 
alkynes 2 and 3 

M R H - -  MR 3 2 RaM - -  MR a 3 

C Me 0.169 

Si Me 4.16 7.63 

Ge Me 19.0 106 

Sn Bu 58.2 366 

Sn Me 1242 

The cycloadditions of organotin alkynes to 1,2,4,5-tetrazine offer an easy way for the rapid synthesis of 

starmylated pyridazines under mild conditions. Palladium-catalysed eross-coupling reactions are a well known 

tool for the synthesis of  complex biaryls. Thus 4-tributyistannyl-pyridazine 4d was examined to serve as a 

synthon for the introduction of the pyridazine moiety into various aromatic ring systems. Successful couplings 

could be achieved by refluxing 4d with an 1.5-fold excess of  6a-d in dry toluene in the presence of  1-2mo1% 



5793 

Pd(PPh3)4 for the time indicated in Table 3, followed by flash chromatographic work-up for 7a-c. s 7d 

crystallized upon cooling of the reaction mixture. 

N~',,~SnBu3 Pd(PPh3) 4 N ~  Ar 
~ J  + Ar-Hal = 

toluene, reflux 

4(I 7a-d 

Scheme 2 

Table 3. Reaction conditions for the Pd-catalysed coupling reactions of 4d in refluxing toluene 

Ag-Hai t (h) Coupling product Yield (%) Mp. (°C). 

6a ~ - I  48 7* N ' I X P - - / ~ ~  51 86-87 

N _  

N- -  
6c ~s~Br  24 7c N / ~  74 77-78 

6d (I: _ ~  Br 24 7d N'~N--/~_NN~ 93 177 

The tin-lithium exchange is a conunon procedure for vinyltin compounds. Analogous treatment of 4d at 
low temperature with n-butyl lithium led to an orange suspension, which was quenched by various strong 
electrophiles (Scheme 3, E-Hal: 4c: Me3SiCI, $a: Ph~PCI, 8b: PhSeBr). The expected substituted pyridazines 
could he isolated by flash chromatography in modest yields of approximately 35%. 9 

E yield (%) 

Et20/THF, -80°C 8a PPh2 34 
4d 4¢, 8a,b gb SePh 39 

Scheme 3 

Due to the fact, that in all cases starting material could be recovered, reaction conditions have to be 
optimized. Further investigations on the synthetic applications of the reaction studied are in progress. 
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